Defective endosome-TGN retrograde transport promotes NLRP3 inflammasome activation (16 tweets)

Inflammasome complexes are pivotal in the innate immune response to pathogens and other danger signals1–4. The NLRP3 inflammasome is activated in response to a broad variety of cellular stressors. Most of the stimuli act in a potassium efflux-dependent manner but a primary and converging sensing mechanism by the NLRP3 receptor initiating inflammasome assembly remains ill-defined. Here we show that NLRP3 activators disrupt endosome-TGN retrograde transport (ETRT) and lead to localization of NLRP3 to endosomal vesicles. Genetic and pharmacologic perturbation of ETRT leads to accumulation of phosphoinositol-4-phosphate (PI4P) in endosomes to which NLRP3 is recruited. Disruption of ETRT potentiates NLRP3 inflammasome activation in murine and human macrophages in vitro. Mice with defects in ETRT in the myeloid compartment are more susceptible to LPS-induced sepsis showing enhanced mortality and IL-1β serum levels as compared to control animals. Our study thus uncovers that changes in endocytic trafficking mediate NLRP3-dependent inflammatory responses.


This is a companion discussion topic for the original entry at https://doi.org/10.1101/2021.09.14.460331